Fractional Weak Discrepancy of Posets and Certain Forbidden Configurations

نویسندگان

  • Alan Shuchat
  • Randy Shull
  • Ann N. Trenk
چکیده

In this paper we describe the range of values that can be taken by the fractional weak discrepancy of a poset subject to forbidden r+ s configurations, where r+s = 4. Generalizing previous work on weak discrepancy in [5, 12, 13], the notion of fractional weak discrepancy wdF (P ) of a poset P = (V,≺) was introduced in [7] as the minimum nonnegative k for which there exists a function f : V → R satisfying (i) if a ≺ b then f(a)+1 ≤ f(b) and (ii) if a ‖ b then |f(a)−f(b)| ≤ k. Semiorders were characterized by their fractional weak discrepancy in [8]. Here we describe the range of values of wdF (P ) according to whether P contains an induced 2+ 2 and/or an induced 3+ 1. In particular, we prove that the range for an interval order that is not a semiorder (contains a 3+ 1 but no 2+ 2) is the set of rational numbers greater than or equal to one. ∗Supported in part by a Wellesley College Brachman Hoffman Fellowship.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden subposets for fractional weak discrepancy at most k

The fractional weak discrepancy of a poset P , written wdF (P ), is the least k such that some f : P → R satisfies f(y)− f(x) ≥ 1 for x ≺ y and |f(y)− f(x)| ≤ k for x‖y. We determine the minimal forbidden subposets for the property wdF (P ) ≤ k when k is an integer.

متن کامل

Subpullbacks and Po-flatness Properties of S-posets

In (Golchin A. and Rezaei P., Subpullbacks and flatness properties of S-posets. Comm. Algebra. 37: 1995-2007 (2009)) study was initiated of flatness properties of right -posets  over a pomonoid  that can be described by surjectivity of  corresponding to certain (sub)pullback diagrams and new properties such as  and  were discovered. In this article first of all we describe po-flatness propertie...

متن کامل

Fractional weak discrepancy and split semiorders

The fractional weak discrepancy wdF (P ) of a poset P = (V,≺) was introduced in [5] as the minimum nonnegative k for which there exists a function f : V → R satisfying (i) if a ≺ b then f(a)+1 ≤ f(b) and (ii) if a ‖ b then |f(a) − f(b)| ≤ k. In this paper we generalize results in [6, 7] on the range of wdF for semiorders to the larger class of split semiorders. In particular, we prove that for ...

متن کامل

A Characterization of Partially Ordered Sets with Linear Discrepancy Equal to 2

The linear discrepancy of a poset P is the least k such that there is a linear extension L of P such that if x and y are incomparable in P, then |hL(x) − hL(y)| ≤ k, where hL(x) is the height of x in L. Tanenbaum, Trenk, and Fishburn characterized the posets of linear discrepancy 1 as the semiorders of width 2 and posed the problem of characterizing the posets of linear discrepancy 2. We show t...

متن کامل

Fractional weak discrepancy and interval orders

The fractional weak discrepancy wdF (P ) of a poset P = (V,≺) was introduced in [6] as the minimum nonnegative k for which there exists a function f : V → R satisfying (i) if a ≺ b then f(a)+1 ≤ f(b) and (ii) if a ‖ b then |f(a) − f(b)| ≤ k. In this paper we generalize results in [7, 8] on the range of the wdF function for semiorders (interval orders with no induced 3+ 1) to interval orders wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007